Copied to
clipboard

G = C42.518C23order 128 = 27

379th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.518C23, C4.392- 1+4, C4⋊C4.183D4, Q83Q88C2, (C4×Q16)⋊46C2, C84Q813C2, Q8.Q850C2, D4.Q8.2C2, C4.Q1645C2, C42Q1643C2, (C2×Q8).139D4, C2.65(Q8○D8), Q16⋊C429C2, C4⋊C4.266C23, C4⋊C8.142C22, (C2×C8).209C23, (C4×C8).235C22, (C2×C4).569C24, Q8.40(C4○D4), C4⋊Q8.198C22, Q8.D4.3C2, C8⋊C4.68C22, C4.Q8.76C22, C2.77(Q85D4), SD16⋊C4.2C2, (C4×D4).207C22, (C2×D4).277C23, (C4×Q8).200C22, (C2×Q8).262C23, (C2×Q16).93C22, C2.D8.209C22, D4⋊C4.92C22, (C2×SD16).74C22, C4.4D4.85C22, C22.829(C22×D4), C42.C2.70C22, Q8⋊C4.213C22, C2.104(D8⋊C22), C42.30C2214C2, C42.28C22.2C2, C42.78C22.3C2, C22.50C24.10C2, C4.270(C2×C4○D4), (C2×C4).645(C2×D4), SmallGroup(128,2109)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.518C23
C1C2C4C2×C4C42C4×Q8Q83Q8 — C42.518C23
C1C2C2×C4 — C42.518C23
C1C22C4×Q8 — C42.518C23
C1C2C2C2×C4 — C42.518C23

Generators and relations for C42.518C23
 G = < a,b,c,d,e | a4=b4=1, c2=e2=b2, d2=a2b2, ab=ba, ac=ca, dad-1=a-1b2, ae=ea, cbc-1=ebe-1=b-1, bd=db, dcd-1=a2b2c, ece-1=bc, ede-1=b2d >

Subgroups: 280 in 166 conjugacy classes, 86 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4×C8, C8⋊C4, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C42⋊C2, C4×D4, C4×Q8, C4×Q8, C22⋊Q8, C4.4D4, C42.C2, C42.C2, C422C2, C4⋊Q8, C4⋊Q8, C2×SD16, C2×Q16, C4×Q16, SD16⋊C4, Q16⋊C4, C84Q8, C42Q16, Q8.D4, C4.Q16, D4.Q8, Q8.Q8, C42.78C22, C42.28C22, C42.30C22, C22.50C24, Q83Q8, C42.518C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2- 1+4, Q85D4, D8⋊C22, Q8○D8, C42.518C23

Character table of C42.518C23

 class 12A2B2C2D4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R8A8B8C8D8E8F
 size 11118222244444444488888444488
ρ111111111111111111111111111111    trivial
ρ2111111111111-1111-11-11-11-1-1-1-1-1-1-1    linear of order 2
ρ311111-11-11-1-1-11-11-111-1-111-11-11-11-1    linear of order 2
ρ411111-11-11-1-1-1-1-11-1-111-1-111-11-11-11    linear of order 2
ρ511111-11-1111-1-11-11-1-11-11-1-11-11-1-11    linear of order 2
ρ611111-11-1111-111-111-1-1-1-1-11-11-111-1    linear of order 2
ρ7111111111-1-11-1-1-1-1-1-1-111-111111-1-1    linear of order 2
ρ8111111111-1-111-1-1-11-111-1-1-1-1-1-1-111    linear of order 2
ρ91111-1-11-11-11-1-1-111-1111-1-111-11-11-1    linear of order 2
ρ101111-1-11-11-11-11-11111-111-1-1-11-11-11    linear of order 2
ρ111111-111111-11-111-1-11-1-1-1-1-1111111    linear of order 2
ρ121111-111111-11111-1111-11-11-1-1-1-1-1-1    linear of order 2
ρ131111-11111-1111-1-111-11-1-11-11111-1-1    linear of order 2
ρ141111-11111-111-1-1-11-1-1-1-1111-1-1-1-111    linear of order 2
ρ151111-1-11-111-1-111-1-11-1-11-1111-11-1-11    linear of order 2
ρ161111-1-11-111-1-1-11-1-1-1-11111-1-11-111-1    linear of order 2
ρ17222202-22-2-20-202200-200000000000    orthogonal lifted from D4
ρ1822220-2-2-2-2-20202-200200000000000    orthogonal lifted from D4
ρ19222202-22-220-20-2-200200000000000    orthogonal lifted from D4
ρ2022220-2-2-2-22020-2200-200000000000    orthogonal lifted from D4
ρ212-22-20020-202i0200-2i-200000002i0-2i00    complex lifted from C4○D4
ρ222-22-20020-20-2i02002i-20000000-2i02i00    complex lifted from C4○D4
ρ232-22-20020-20-2i0-2002i200000002i0-2i00    complex lifted from C4○D4
ρ242-22-20020-202i0-200-2i20000000-2i02i00    complex lifted from C4○D4
ρ254-44-400-40400000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ2644-4-40000000000000000000220-22000    symplectic lifted from Q8○D8, Schur index 2
ρ2744-4-40000000000000000000-22022000    symplectic lifted from Q8○D8, Schur index 2
ρ284-4-440-4i04i000000000000000000000    complex lifted from D8⋊C22
ρ294-4-4404i0-4i000000000000000000000    complex lifted from D8⋊C22

Smallest permutation representation of C42.518C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 20 26 23)(2 17 27 24)(3 18 28 21)(4 19 25 22)(5 12 63 15)(6 9 64 16)(7 10 61 13)(8 11 62 14)(29 37 41 36)(30 38 42 33)(31 39 43 34)(32 40 44 35)(45 56 60 51)(46 53 57 52)(47 54 58 49)(48 55 59 50)
(1 48 26 59)(2 45 27 60)(3 46 28 57)(4 47 25 58)(5 39 63 34)(6 40 64 35)(7 37 61 36)(8 38 62 33)(9 32 16 44)(10 29 13 41)(11 30 14 42)(12 31 15 43)(17 51 24 56)(18 52 21 53)(19 49 22 54)(20 50 23 55)
(1 45 28 58)(2 59 25 46)(3 47 26 60)(4 57 27 48)(5 44 61 30)(6 31 62 41)(7 42 63 32)(8 29 64 43)(9 39 14 36)(10 33 15 40)(11 37 16 34)(12 35 13 38)(17 50 22 53)(18 54 23 51)(19 52 24 55)(20 56 21 49)
(1 32 26 44)(2 29 27 41)(3 30 28 42)(4 31 25 43)(5 47 63 58)(6 48 64 59)(7 45 61 60)(8 46 62 57)(9 50 16 55)(10 51 13 56)(11 52 14 53)(12 49 15 54)(17 36 24 37)(18 33 21 38)(19 34 22 39)(20 35 23 40)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,26,23)(2,17,27,24)(3,18,28,21)(4,19,25,22)(5,12,63,15)(6,9,64,16)(7,10,61,13)(8,11,62,14)(29,37,41,36)(30,38,42,33)(31,39,43,34)(32,40,44,35)(45,56,60,51)(46,53,57,52)(47,54,58,49)(48,55,59,50), (1,48,26,59)(2,45,27,60)(3,46,28,57)(4,47,25,58)(5,39,63,34)(6,40,64,35)(7,37,61,36)(8,38,62,33)(9,32,16,44)(10,29,13,41)(11,30,14,42)(12,31,15,43)(17,51,24,56)(18,52,21,53)(19,49,22,54)(20,50,23,55), (1,45,28,58)(2,59,25,46)(3,47,26,60)(4,57,27,48)(5,44,61,30)(6,31,62,41)(7,42,63,32)(8,29,64,43)(9,39,14,36)(10,33,15,40)(11,37,16,34)(12,35,13,38)(17,50,22,53)(18,54,23,51)(19,52,24,55)(20,56,21,49), (1,32,26,44)(2,29,27,41)(3,30,28,42)(4,31,25,43)(5,47,63,58)(6,48,64,59)(7,45,61,60)(8,46,62,57)(9,50,16,55)(10,51,13,56)(11,52,14,53)(12,49,15,54)(17,36,24,37)(18,33,21,38)(19,34,22,39)(20,35,23,40)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,26,23)(2,17,27,24)(3,18,28,21)(4,19,25,22)(5,12,63,15)(6,9,64,16)(7,10,61,13)(8,11,62,14)(29,37,41,36)(30,38,42,33)(31,39,43,34)(32,40,44,35)(45,56,60,51)(46,53,57,52)(47,54,58,49)(48,55,59,50), (1,48,26,59)(2,45,27,60)(3,46,28,57)(4,47,25,58)(5,39,63,34)(6,40,64,35)(7,37,61,36)(8,38,62,33)(9,32,16,44)(10,29,13,41)(11,30,14,42)(12,31,15,43)(17,51,24,56)(18,52,21,53)(19,49,22,54)(20,50,23,55), (1,45,28,58)(2,59,25,46)(3,47,26,60)(4,57,27,48)(5,44,61,30)(6,31,62,41)(7,42,63,32)(8,29,64,43)(9,39,14,36)(10,33,15,40)(11,37,16,34)(12,35,13,38)(17,50,22,53)(18,54,23,51)(19,52,24,55)(20,56,21,49), (1,32,26,44)(2,29,27,41)(3,30,28,42)(4,31,25,43)(5,47,63,58)(6,48,64,59)(7,45,61,60)(8,46,62,57)(9,50,16,55)(10,51,13,56)(11,52,14,53)(12,49,15,54)(17,36,24,37)(18,33,21,38)(19,34,22,39)(20,35,23,40) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,20,26,23),(2,17,27,24),(3,18,28,21),(4,19,25,22),(5,12,63,15),(6,9,64,16),(7,10,61,13),(8,11,62,14),(29,37,41,36),(30,38,42,33),(31,39,43,34),(32,40,44,35),(45,56,60,51),(46,53,57,52),(47,54,58,49),(48,55,59,50)], [(1,48,26,59),(2,45,27,60),(3,46,28,57),(4,47,25,58),(5,39,63,34),(6,40,64,35),(7,37,61,36),(8,38,62,33),(9,32,16,44),(10,29,13,41),(11,30,14,42),(12,31,15,43),(17,51,24,56),(18,52,21,53),(19,49,22,54),(20,50,23,55)], [(1,45,28,58),(2,59,25,46),(3,47,26,60),(4,57,27,48),(5,44,61,30),(6,31,62,41),(7,42,63,32),(8,29,64,43),(9,39,14,36),(10,33,15,40),(11,37,16,34),(12,35,13,38),(17,50,22,53),(18,54,23,51),(19,52,24,55),(20,56,21,49)], [(1,32,26,44),(2,29,27,41),(3,30,28,42),(4,31,25,43),(5,47,63,58),(6,48,64,59),(7,45,61,60),(8,46,62,57),(9,50,16,55),(10,51,13,56),(11,52,14,53),(12,49,15,54),(17,36,24,37),(18,33,21,38),(19,34,22,39),(20,35,23,40)]])

Matrix representation of C42.518C23 in GL8(𝔽17)

1615000000
11000000
0016150000
00110000
00000010
00000001
00001000
00000100
,
160000000
016000000
001600000
000160000
00000100
000016000
00000001
000000160
,
6141500000
1090150000
1131130000
78780000
00000550
000050012
00005005
000001250
,
82240000
1090150000
006150000
0010110000
00005005
000005120
0000012120
000050012
,
1601500000
0160150000
00100000
00010000
00002151515
00001515152
00001515215
00001521515

G:=sub<GL(8,GF(17))| [16,1,0,0,0,0,0,0,15,1,0,0,0,0,0,0,0,0,16,1,0,0,0,0,0,0,15,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0],[6,10,11,7,0,0,0,0,14,9,3,8,0,0,0,0,15,0,11,7,0,0,0,0,0,15,3,8,0,0,0,0,0,0,0,0,0,5,5,0,0,0,0,0,5,0,0,12,0,0,0,0,5,0,0,5,0,0,0,0,0,12,5,0],[8,10,0,0,0,0,0,0,2,9,0,0,0,0,0,0,2,0,6,10,0,0,0,0,4,15,15,11,0,0,0,0,0,0,0,0,5,0,0,5,0,0,0,0,0,5,12,0,0,0,0,0,0,12,12,0,0,0,0,0,5,0,0,12],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,15,0,1,0,0,0,0,0,0,15,0,1,0,0,0,0,0,0,0,0,2,15,15,15,0,0,0,0,15,15,15,2,0,0,0,0,15,15,2,15,0,0,0,0,15,2,15,15] >;

C42.518C23 in GAP, Magma, Sage, TeX

C_4^2._{518}C_2^3
% in TeX

G:=Group("C4^2.518C2^3");
// GroupNames label

G:=SmallGroup(128,2109);
// by ID

G=gap.SmallGroup(128,2109);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,120,758,723,352,346,304,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=e^2=b^2,d^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=a^2*b^2*c,e*c*e^-1=b*c,e*d*e^-1=b^2*d>;
// generators/relations

Export

Character table of C42.518C23 in TeX

׿
×
𝔽